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Abstract

We present molecular dynamics simulation results for the viscosity and mutual di�usion constant

of a strongly asymmetric two-component plasma (TCP). We compare the results with available

theoretical models previously tested for much smaller asymmetries. For the case of viscosity we

propose a new predictive framework based on the linear mixing rule, while for mutual di�usion we

point out some consistency problems of widely used Boltzmann equation based models.
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The important advancements that occurred in the last decade in the experimental tech-

niques involving high-power lasers have generated a renewed interest in the properties of

dense plasmas in general and their transport properties in particular [1{3]. The experimen-

tal capabilities currently available and the ones that are expected to become available in the

near future [4] promise to further advance the �eld of inertial con�nement fusion (ICF) as well

as shed new light on long-standing astrophysics problems. Many times such experiments ei-

ther probe, or their outcome is strongly dependent on, the behavior of plasma mixtures with

various degrees of charge and mass asymmetries of the components. Such mixtures occur for

example in ICF due to the instability (e.g. Richtmyer-Meshkov or Rayleigh-Taylor) driven

mixing of the heavy elements that make up the enclosing shell and the much lighter fuel. In

this case the stability of the initial interfaces, nature of the ensuing 
ows and degree of fuel

contamination are crucially linked to such mixture properties as shear viscosity and mutual

di�usion [5{7]. In the present paper we calculate these properties using molecular dynamics

simulations for a simple but relevant model: the two-component plasma (TCP) [8], also

known as the binary ionic mixture (BIM), which is a generalization of the one-component

plasma (OCP) [9]. We study a rather extreme, ICF-inspired system [7], D+�Au39+, which

displays roughly two orders of magnitude charge and mass asymmetry, but the results should

apply to other plasma mixtures as well, e.g. of astrophysics signi�cance [10], where large

charge and mass asymmetries are present. We compare the MD results with available the-

oretical models previously tested for much smaller asymmetries. For the case of viscosity

we propose a new predictive framework based on the linear mixing rule, while for mutual

di�usion we point out some consistency problems of Boltzmann equation based models.

The TCP model consists of a mixture of N1 point ions of charge q1 = Z1e and mass M1

and N2 point ions of charge q2 = Z2e and massM2 embedded in a uniform, rigid, neutralizing

electronic background. We denote the number concentrations by x� = N�=N , N = N1+N2,

� = 1; 2 and number densities by �� = N�=V , � = �1 + �2, where V = L3 is the volume.

hZi = x1Z1+x2Z2 is the average charge and �0 = �1Z1+�2Z2 the electronic number density.

As usual the mean inter-electronic and inter-ionic distances are de�ned by a0 = (3=4��0) 13
and a = (3=4��)

1

3 = a0hZi 13 , while the electronic and ionic coupling parameters are:

�0 =
e2

a0kBT = �hZi 13 (1)

�i = �0hZ 5

3 i (2)
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with

� =
e2

akBT
(3)

The thermodynamics of the system is fully determined by one coupling constant, e.g. �,

and concentration x1. As it is the case for the OCP, the validity range of the TCP model

is such that the Fermi temperature of the electrons is TF � T and the densities are high

enough so rs � 1, rs = a0=a0, a0 - Bohr radius, corresponding to a completely degenerate

and rigid electronic background.

The thermodynamics of the TCP has been thoroughly studied and is known to be very

well described by the linear mixing rule [8, 11, 12]. For moderate charge asymmetries

an OCP-based \one-
uid theory" is also a reasonable approximation [8], with an e�ective

charge Z2
eff = hZ 5

3 ihZi 13 suggested by the ion-sphere model [13]. The relative success of this

\one-
uid" representation has lead Clerouin et al. to propose that the shear viscosity can

also be predicted in terms of the equivalent OCP, as already tested for thermal transport

[14]. (Although not explicitly stated in [2], further assumptions need to be made for such a

prediction - see below). This \one-
uid" approach was shown to be suitable for calculating

the TCP viscosity at charge and mass asymmetries of order � 10. Before testing this

idea on much larger asymmetries, � 100, we note that, surprisingly, the viscosity of the

OCP itself does not appear to be very accurately known. For intermediate and strong

couplings, 1 � � � 100, Bernu and Vieillefosse [15] have proposed an interpolation formula

based on three MD simulation results obtained with systems of 108 particles. In [2] the

authors propose a di�erent relation based on the kinetic theory of Wallenborn and Baus

[16], that extends to the weak coupling regime. However, the disagreement between these

two approaches is signi�cant in the regime that they both cover, � � 1, particularly at

intermediate �'s. Unfortunately it is diÆcult to ascertain the reliability of these predictions

given both the limited simulation results available and the small system size used, which

limits the accuracy of the results.

To settle this question we performed extensive microcanonical MD simulations of the

OCP with much larger system sizes - 1372 particles, and a wide range of coupling constants,

0:05 � � � 100. The Coulomb interactions were handled using the Ewald summation

technique with conducting boundary conditions. The calculation of the shear viscosity �
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was done using the Green-Kubo relation:

� =
1

V kBT

Z 1

0

h�̂xy(t)�̂xy(0)idt (4)

As shown by Bernu and Vieillefosse [15], and more recently in the context of Yukawa plasmas

by Salin and Caillol [17], the evaluation of the pressure tensor �̂ requires an Ewald-type

summation for its interaction part, �̂I:

�̂ = �̂K + �̂I (5)

�̂Kab =
X
i

Mivi;avi;b (6)

�̂I = �̂(r) + �̂(k) (7)

�̂(r)ab =
1

2

X
i6=j

qiqj
rij;arij;b
rij

"
2�e��

2r2ijp
�rij

+
erfc(�rij)

r2ij

#
(8)

�̂(k)ab =
2�

L3

X
jkj6=0

e�
k2

4�2

k2

�
Æab � 2

�
1 +

k2

4�2

�
kakb
k2

�
j~�(k)j2 (9)

~�(k) =
X
i

qie
�ik�ri (10)

where a and b denote the Cartesian coordinates. The Ewald parameter � [18] was chosen

such that the real space sums, e.g. �̂(r), can be calculated with the usual minimum-image

convention, as shown above. The duration of the runs was 103�104!�1
p , where !2

p = 4��e2=M

is the plasma frequency (Z = 1). The natural unit for the viscosity of the OCP is �Ma2!p.

Our simulation results are shown in Fig. 1, together with the interpolation formula of

Bernu and Vieillefosse (for � � 1) and the relation proposed in [2] based on OCP kinetic

theory. The present results largely agree with those of [15], but suggest that in the inter-

mediate coupling range the OCP viscosity is signi�cantly higher than previously predicted.

The well known viscosity minimum appears to be around � ' 21, with �=�0 ' 0:084. We

are not aware of other simulations for weakly coupled plasmas, � � 1, but our viscosity

results in this regime are in qualitative agreement with the kinetic theory of Wallenborn

and Baus, although somewhat lower. Since for these conditions the screened, Debye-H�uckel

potential e2exp(�r=�D)=r, �D = [kBT=8�e
2�0]

1

2 , should be an appropriate representation

of the e�ective inter-ionic interaction and a=�D / �
1

2 , i.e. the interaction is short ranged

for � � 1, a good viscosity estimate should be provided by the Chapman-Enskog theory,

� = 5kBT=8

(2)
2 [19]. As shown in Fig. 1 this is indeed the case, particularly for � � 0:2.
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We choose to �t all the data points with the relation:

�

�0
= A��2 +B��s + C� (11)

which captures rather well the behavior of the OCP viscosity in the wide range of couplings

simulated. The best parameters are: A = 0:482, B = 0:629, C = 1:88�10�3, and s = 0:878.

We know tackle the question of the viscosity of a plasma mixture, in particular when the

charge and mass asymmetries are very large. It should be noted that the system that we focus

on, D+ � Au39+, is not a simple TCP per se, as gold (Au) is only partially ionized and the

e�ect of the remaining electrons may be important under certain thermodynamic conditions.

However, the TCP approach is still relevant provided the densities and temperatures are such

that the distance of closest approach between ions is larger that the radius of the remaining

ion cores.

To elucidate the e�ect on viscosity of mixing plasmas with such large di�erences in charge

and mass as D+ and Au39+ it is convenient to adopt the procedure of Ref. [2], where the

coupling constant � is kept �xed and the concentration of the two species is varied. We

set � = 0:05, which corresponds to �i = 0:05 for pure deuterium (xAu = 0), i.e. a weakly

coupled plasma, and to �i ' 76 for pure gold (xAu = 1), i.e. a strongly coupled plasma. As

before, we perform microcanonical simulations with a system of 1372 particles, at a number

of di�erent concentrations xAu. Due to the strong charge and mass asymmetries, exceedingly

long run times are necessary for both equilibration and data accumulation to calculate the

viscosity using Eq. 4 with an accuracy of 20 � 25%. A good measure of the large \size"

di�erence between the ions is provided for example by the pair correlation functions, which

we show in Fig. 2 for xAu = 0:5.

As noted in [2] the viscosity drops steeply upon mixing highly charged, heavy ions in

a weakly coupled plasma, see Fig. 3. This e�ect can be understood qualitatively in the

framework of a \one-
uid" theory, which we describe below. The coupling constant of

the equivalent OCP is �eff = �Z2
eff , where Z

2
eff = hZ 5

3 ihZi 13 follows from the ion-sphere

model [13]. In this approximation the thermodynamics is fully determined by �eff , but the

calculation of the viscosity requires some additional arguments. For example, a reasonable

unit for the viscosity of this system may be assumed to be �m0 = �hMia2!pm, hMi = x1M1+

x2M2, where !2
pm = !2

phZi2=hMi is the \hydrodynamic" plasma mixture frequency. (The use
of the so-called \kinetic" mixture frequency [20] leaves the results largely unchanged). The
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mixture viscosity in these units is then postulated to be given by the scaled e�ective-OCP

viscosity:

�(�; x)

�m0 (x)
=

�OCP (�eff)

�0
(12)

We show in Fig. 3 the results of such calculations for the system that we study, using both

the OCP viscosity of Ref. [2], and our prediction Eq. 11. The qualitative dependence of

the MD results on xAu, arising from the opposite behaviors of �OCP (�eff) and �m0 (x), is

reproduced correctly, but the quantitative disagreement is also very signi�cant, particularly

for small and moderate Au concentrations. The use of the more accurate OCP viscosity Eq.

11 does not fully alleviate this problem. We conclude that, not surprisingly, the accuracy of

the \one-
uid" model is diminished for extreme asymmetries.

It is clear that this limitation can only be overcome by taking into account, either ex-

plicitly or implicitly, the mixture asymmetry. A direct calculation along the lines of the

kinetic theory of Wallenborn and Baus [16] has been used for example to determine the

TCP mutual di�usion constant at small asymmetries [21]. However, the calculation of the

viscosity is even more complex and given the limitations of the theory even for the OCP its

success for TCP quantitative predictions is rather doubtful. We turn therefore to a more

indirect method, which we outline below. First, we recall an interesting and much studied

property of two-component plasmas, the linear mixing rule [8, 11, 12]. Hansen et al. have

pointed out that the excess internal energy of the TCP, u = Uex=NkBT , is very acurately

represented as a linear combination of the excess energies of two one-component plasmas

with the same electronic coupling constant �0 as the TCP (and ionic charges Z1e and Z2e),

i.e. the mixing of the two components at the same temperature and electronic density is

largely ideal:

u(�0; x1) ' x1uOCP (�
0Z

5

3

1 ) + x2uOCP (�
0Z

5

3

2 ) (13)

We �nd that this rule is satis�ed at very large asymmetries as well, with the largest relative

deviations occurring at �0 � 1, i.e. small Au concentrations, in agreement with [8]. Given

this nearly ideal mixing behavior we assume that other system properties, e.g. viscosity,

are bracketed by the component values as well. For an interpolation relation between the

viscosities of the two OCP's at a given composition we now borrow some concepts from

the linear transport theory of composite media. A common situation encountered in such
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systems is that of \impurities" with a generalized conductivity �1 and total volume fraction

�1 randomly dispersed in a matrix �2. Under these circumstances the e�ective medium

theory [22] employs a mean-�eld like, self-consistent approximation to predict the medium

conductivity on scales much larger than those of the inhomogeneities. For the case of

viscosity this yields [23] for the e�ective medium viscosity �m:

X
i

�i
�i � �m
�i +

3
2
�m

= 0 (14)

We now note that the TCP is obtained by combining one-component plasmas with volume

fractions �i = Zixi=hZi and use the above relation to predict the mixture viscosity, essen-

tially assuming that the theory applies for atomically sized \impurity" domains. Using Eq.

11 for the individual OCP viscosities �1 and �2 we obtain the results shown in Fig. 3.

The degree of agreement with the simulation results is fairly remarkable. This may lead

one to believe that the system is perhaps thermodynamically unstable and separating into

two OCP phases [8]. However, we �nd no evidence for such a scenario and conclude that

the decoupling signaled by the linear mixing rule along with the tremendous asymmetry

between the ions lead to behavior mimicking that of a macroscopically mixed system.

We now turn to the case of ionic interdi�usion. Mutual di�usion in plasma mixtures

plays an important role in the prediction of stellar structure [24], as well as the stability of

ICF targets [5]. For the case of a binary mixture the mutual di�usion coeÆcient D12 can be

calculated in terms of the 
uctuations of the microscopic interdi�usion current [25]:

D12 = x1x2

�
@2(�G=N)

@x21

�
P;T

D0
12 (15)

D0
12 =

1

3Nx1x2

Z 1

0

hjc(t)jc(0)idt (16)

jc(t) = x2

N1X
1

vi(t)� x1

N2X
1

vi(t) (17)

(18)

where G is the Gibbs free energy. The thermodynamic factor that multiplies the Green-

Kubo component D0
12 reduces to unity for dilute gas mixtures [25], but in low density,

weakly coupled plasmas goes to hZ2i=hZi2, which has been interpreted as an e�ect of the

ambipolar electric �eld of the electrons [21]. It is worth noting that the above relation is

a good estimate for x1x2 [@2(�G=N)=@x21]P;T at weak as well as strong couplings. Since the
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linear mixing rule holds well for all couplings, the change in Helmholtz free energy upon

mixing at constant electronic density (and temperature):

�F

N
= f(�0; x1)� x1fOCP (�

0Z
5

3

1 )� x2fOCP (�
0Z

5

3

2 ) (19)

is very well approximated by the ideal entropy of mixing (with negative sign):

�F

N
' kBT

�
x1 ln

x1Z1

hZi + x2 ln
x2Z2

hZi
�

(20)

If we assume that the pressure is entirely determined by the electronic density, i.e.

pelectronic � pionic, which is consistent with the initial assumption rs � 1, then �G = �F .

We can therefore immediately calculate the thermodynamic factor as hZ2i=hZi2. The di�er-
ence between plasma and ideal gas mixtures appears here to be an entropic e�ect induced

by the charge neutralizing background, as mixing occurs at constant electronic density (i.e.

constant electronic pressure) as opposed to constant molecular density (i.e. constant ideal

gas pressure).

In the course of the molecular dynamics simulations with variousD+�Au39+ mixtures we

also calculated the microscopic interdi�usion current jc, and therefore were able to determine

the Green-Kubo integrand D0
12. The results are shown in Fig. 4 relative to D0 = a2!p, along

with the discussed thermodynamic factor estimate. We �nd that D0
12 is almost concentration

independent for xAu � 0:1, but appears to decrease fairly steeply at lower concentrations.

The factor hZ2i=hZi2 has a simple behavior, with a sharp maximum for small amounts of

highly charged ions.

For small ionic asymmetries kinetic theory estimates of D0
12 were found to be in good

agreement with simulations [21]. A simpler model, widely employed for astrophysics prob-

lems, was proposed by Paquette et al. [26]. Its main assumption is that the Boltzmann

equation can be used to calculate the transport coeÆcients of plasma mixtures by making

use of the Chapman-Enskog solution method [19]. The authors further argue that screened

potentials, ZiZje2exp(�r=�)=r, are better suited for such estimates than the pure Coulomb

interaction. In order to extend the validity of this approach to strong couplings they propose

as appropriate screening distance � the larger of �D and a, where �D is the Debye screening

length:

�D =

�
kBT

4�e2(�0 +
P

i �iZ
2
i )

�1

2

(21)
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Under these assumptions the Boltzmann equation mutual di�usion coeÆcient is given in the

�rst Enskog approximation as:

[D12]1 =
3kBT (M1 +M2)

16�M1M2

(11)
12

(22)

where 
(11)
12 are collision integrals [19] that have been tabulated with high accuracy in Ref.

[26]. We perform such calculations for the D+ � Au39+ mixture using the slightly better

second Enskog approximation [26]. The outcome, see Fig. 4, reproduces rather well the

MD simulation results for D0
12 at xAu � 0:1, but not the mutual di�usion coeÆcient D12.

This is an important point that merits further discussion. In fact, there is no reason to

expect that Chapman-Enskog estimates based on the Boltzmann equation for the ions can

reproduce the full D12 for either pure Coulomb interactions (with some reasonable cut-o�)

or screened potentials. As shown in [21] for low density plasmas or more generally here,

the enhancement factor hZ2i=hZi2 only arises when the electronic background is explicitly

taken into account either through its ambipolar �eld in a dilute plasma kinetic description

[21] or simply at the thermodynamic level in the context of the linear mixing rule. No such

e�ect is included when the standard Boltzmann equation, which is consistent with ideal gas

thermodynamics, is used to model the dynamics of the ions. Therefore it is reasonable to

expect that such approaches can only provide estimates of the Green-Kubo part, i.e. D0
12, of

the mutual di�usion constant, as already evidenced by our simulation results and perhaps

not fully appreciated before. Furthermore, the plasma thermodynamic factor is large for

large charge asymmetries particularly at small concentrations of highly-charged heavy ions,

a situation quite typical in many astrophysics problems [24].

The apparent failure of the screened potentials method proposed by Paquette et al. at low

Au concentrations may appear at �rst puzzling since as xAu decreases so does the e�ective

coupling constant �eff and therefore the theory should become in principle rigorously valid.

We note however that this also requires �D � a, which for our system and chosen � means

xAu no bigger than � 10�3. In fact, although not easily seen in Fig. 4, the theoretical values

drop sharply for such compositions to values close to the MD result at the lowest simulated

Au concentration, xAu = 0:03. For this composition the screening distance a, although

larger than �D, appears to be too small. This is perhaps not too surprising given that due

to the signi�cant separation between the highly-charged ions they are primarily screened by

the small ions and the electronic background, which should require distances signi�cantly
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larger than a when the charge asymmetry is very large.
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FIG. 1: OCP viscosity: present simulations (circles), �t of simulation results - Eq. 11 (solid

line), predictive relation of Ref. [2] (dashed line), Bernu-Vieillefosse interpolation formula [15]

(dot-dashed line), Chapman-Enskog estimate using screened potentials (dotted line).
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FIG. 2: Ion-ion pair correlation functions for xAu = 0:5: D+ � D+ (dotted line), D+ � Au39+

(dashed line), Au39+ �Au39+ (solid line).
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FIG. 3: Viscosity of the D+ �Au39+ TCP: simulations (diamonds), one-component model of Ref.

[2] (dot-dashed line), one-component model using Eq. 11 for the OCP viscosity (dashed line),

two-component model Eq. 14 (solid line).
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FIG. 4: Mutual di�usion constant contribution D0
12 of the D

+�Au39+ TCP: simulations (circles),

screened potential model of Ref. [26] (solid line). Thermodynamic factor hZ2i=hZi2 (dashed line).

15


